Isotopic constraints on the age and early differentiation of the Earth.
نویسنده
چکیده
The Earth's age and early differentiation history are re-evaluated using updated isotopic constraints. From the most primitive terrestrial Pb isotopic compositions found at Isua Greenland, and the Pilbara of Western Australia, combined with precise geochronology of these localities, an age 4.49 +/- 0.02 Ga is obtained. This is interpreted as the mean age of core formation as U/Pb is fractionated due to sequestering of Pb into the Earth's core. The long-lived Rb-Sr isotopic system provides constraints on the time interval for the accretion of the Earth as Rb underwent significant depletion by volatile loss during accretion of the Earth or its precursor planetesimals. A primitive measured 87Sr/86Sr initial ratio of 0.700502 +/- 10 has been obtained for an early Archean (3.46 Ga) barite from the Pilbara Block of Western Australia. Using conservative models for the evolution of Rb/Sr in the early Archean mantle allows an estimate to be placed on the Earth's initial Sr ratio at approximately 4.50 Ga, of 0.69940 +/- 10. This is significantly higher than that measured for the Moon (0.69900 +/- 2) or in the achondrite, Angra dos Reis (0.69894 +/- 2) and for a Rb/Sr ratio of approximately 1/2 of chondrites corresponds to a mean age for accretion of the Earth of 4.48 + /- 0.04 Ga. The now extinct 146Sm-142Nd (T1/2(146)=103 l0(6)yrs) combined with the long-lived 147Sm-143Nd isotopic systematics can also be used to provide limits on the time of early differentiation of the Earth. High precision analyses of the oldest (3.8-3.9 Ga) Archean gneisses from Greenland (Amitsoq and Akilia gneisses), and Canada (Acasta gneiss) do not show measurable (> +/- l0ppm) variations of 142Nd, in contrast to the 33 ppm 142Nd excess reported for an Archean sample. The general lack of 142Nd variations, combined with the presence of highly positive epsilon 143 values (+4.0) at 3.9 Ga, indicates that the record of large-scale Sm/Nd fractionation events was not preserved in the early-Earth from 4.56 Ga to approximately 4.3 Ga. This is consistent with large-scale planetary re-homogenisation during ongoing accretion of the Earth. The lack of isotopic anomalies in short-lived decay systems, together with the Pb and Sr isotopic constraints is thus consistent with core formation and accretion of the Earth occurring over an approximately 100 Ma interval following the formation of meteorites at 4.56 Ga.
منابع مشابه
Geochemical and isotopic (Nd and Sr) constraints on elucidating the origin of intrusions from northwest Saveh, Central Iran
Three intrusive granitoid bodies from northwest Saveh, central Iran, are embedded in volcanic sedimentary rocks of the Eocene,forming isolated small outcrops: Khalkhab quartz monzodioritic units (SiO2: ~52-57 wt %) to the northwest, Neshveh granodioriticunits (SiO2: ~62-71 wt %) to the northeast, and Selijerd granodioritic units (SiO2: ~63-69 wt %) to the southeast. The Khalkhab unit iscomposed...
متن کاملسنسنجی U-Pb بر بلورهای زیرکن، نسبتهای ایزوتوپی Sr-Nd و زمین شیمی گنبدهای آداکیتی نئوژن کمان ماگمایی قوچان- اسفراین، شمال شرق ایران
Quchan- Esfarayen magmatic belt (north of Sabzevar) include Neogene adakitic domes with andesite to rhyolite in composition which is cut by Jurasic sedimentary rocks, Eocene volcano-sedimentary rocks, Miocene sedimentary rocks and even occasionally Peliocene conglomerate. The main minerals of these rocks are plagioclase and amphibole with various textures such as felsitic porphyry, microlitic p...
متن کاملPetrological and geodynamical constraints of Chaldoran basaltic rocks, NW of Iran: evidence from geochemical characteristics
Chaldoran area in NW of Iran has Mesozoic oceanic crust basement. The studied rocks of this region can be divided into three groups: ophiolitic gabbros and pillow lavas, ophiolitic volcanoclastics and Eocene lava flows. Ophiolitic mafic rocks show continental volcanic arc natures and Eocene lava flow shows OIB-like nature. During the Mesozoic,the Chaldoran region was situated in the active cont...
متن کاملA method for 2-dimensional inversion of gravity data
Applying 2D algorithms for inverting the potential field data is more useful and efficient than their 3D counterparts, whenever the geologic situation permits. This is because the computation time is less and modeling the subsurface is easier. In this paper we present a 2D inversion algorithm for interpreting gravity data by employing a set of constraints including minimum distance, smoothness,...
متن کاملHf-W AND THE ISOTOPIC CRISIS FOR THE GIANT IMPACT ORIGIN OF THE MOON
Introduction: It has become clear over the last few years that the widely accepted model for the origin of the Earth-Moon system as the result of a Mars-sized giant impactor colliding with proto-Earth is inconsistent with a variety of new isotopic data. Generally, it is thought that the Earth and the Mars-sized Moonforming impactor were isotopically different (for mass independent isotopic vari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Royal Society of Western Australia
دوره 79 Pt 1 شماره
صفحات -
تاریخ انتشار 1996